Abstract

When attempting to follow ground-based moving objects (hereafter referred to as ``waldos'') using an unmanned air vehicle (UAV), occlusion can become a significant problem for computer vision algorithms designed to track the object. When a waldo is occluded, the computer vision algorithm loses the track and the UAV's ability to predict movement degrades. We propose a path-planning and replanning method that moves a UAV to a location that maximizes the important waldos that can be seen while accounting for occlusion, and attempts to maximize the area it can see during travel. The proposed work moves beyond state-of-the-art algorithms designed to follow a single waldo while accounting for occlusion to enable tracking multiple prioritized waldos.

Degree

MS

College and Department

Physical and Mathematical Sciences; Computer Science

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2017-05-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd9250

Keywords

path-planning, rapid replanning, RRT*, FMT*, ORRT*, OFMT* target tracking

Language

english

Share

COinS