Abstract
Cryogenic carbon capture process can be used to efficiently eliminate CO2 emissions from fossil-fueled power plants. The energy-storing embodiment of cryogenic carbon capture (ES-CCC) integrates energy storage with cryogenic carbon capture and uses natural gas as a refrigerant. ES-CCC captures CO2 from slowly varying or steady-state sources even as it absorbs and replaces large amounts of energy on the grid for energy storage. These large transients occur in the LNG generation as the process moves through energy storing to energy recovery operations. Additionally, raw natural gas often includes CO2 that forms an azeotrope with ethane. Breaking this azeotrope and separating CO2 from other hydrocarbons to meet natural gas pipeline and liquefied natural gas (LNG) standards is very energy intensive. The purpose of this work is to (a) describe a dynamic heat exchanger that reduces the heat exchanger performance and efficiency losses experienced under transient conditions and (b) introduce an alternative extractive distillation system for CO2 separation from ethane that requires less capital and has a lower operating cost than the conventional system for the same purification. This investigation demonstrates theoretically and experimentally that the dynamic heat exchangers can absorb sudden and large changes in flow rates and other properties without compromising either the heat exchanger efficiency or creating thermal or other stresses. These heat exchangers play an essential role in the ES-CCC process. Designs for retrofitting existing heat exchangers and for replacing existing heat exchangers with new designs are both theoretically and experimentally tested. The ES-CCC process requires natural gas processing to meet pipeline and LNG standards in many applications, depending primarily on the CO2 content of locally available NG. The energy, cost, and dynamic response of such processing hinges primarily on the most difficult step, breaking the CO2-ethane azeotrope. This project proposes and analyzes an alternative process for breaking this azeotrope and a control scheme that dramatically improves the dynamic response of natural gas processing plants, including steady and transient control scheme and processing simulations. These contributions to the ES-CCC capture process all have much broader applications in many chemical and energy processes. These contributions to ES-CCC and other industrial processes improve energy efficiency and dynamic performance of many processes and are ready for larger scale demonstration.
Degree
PhD
College and Department
Ira A. Fulton College of Engineering and Technology; Chemical Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Ebrahimzadeh, Edris, "Mitigating Transients and Azeotropes During Natural Gas Processing" (2016). Theses and Dissertations. 5880.
https://scholarsarchive.byu.edu/etd/5880
Date Submitted
2016-04-01
Document Type
Dissertation
Handle
http://hdl.lib.byu.edu/1877/etd8554
Keywords
CO2 capture, energy-storing, dynamic heat exchanger, efficiency, transient flow, extractive distillation, NGL recovery
Language
english