Abstract

Improving seismic hazard analysis is an important part of building safer structures and protecting lives. Since large magnitude earthquakes are rarer than other earthquakes, it is harder to model seismic hazards such as lateral spread displacements for these events. Engineers are often required to extrapolate current lateral spreading models when designing utilities, bridges, and piers to withstand the ground displacements caused by earthquakes with magnitudes larger than 8.0. This study uses three case histories from the Maule Chile 2010 earthquake (Mw =8.8) to develop recommendations on which models are most accurate for large earthquake events and how to improve the accuracy of the models. Six empirical models commonly used in engineering practice are compared. The model that best matches the Maule Chile case histories uses local attenuation relationships to make it easier to apply the model to any seismic region. Models that use lab data from cyclic shear tests over predict displacements but using a strain-reduction factor with depth significantly improved the accuracy of the results. Site-to-source distances can vary greatly between geographic seismic and faulting mechanisms. For this reason, models that depend on an internal source-to-site distance show less promise with large subduction zone earthquakes throughout the world. Models with site-to-source distances are most accurate in the western United States and Japan because the case histories for these models came from those countries.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2014-12-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd7455

Keywords

lateral spread, liquefaction, Chile, Maule earthquake

Language

english

Share

COinS