Abstract
Despite the crucial role they play in transferring loads from the superstructure to the foundation, steel column-to-footing connections have received little attention in research. Though shallow embedded connections are typically characterized as pinned, studies have shown that they exhibit significant rotational stiffness. The objective of this thesis is to quantify the rotational stiffness of such connections. A method named the continuum model is developed by which the rotational stiffness of embedded connections may be calculated. Outputs from this model are compared with experimental data on steel connections embedded in concrete. The continuum model is shown to be capable of reasonably predicting the rotational stiffness of such connections. Results from the model were consistent with those of previous experimental studies that showed that embedment lengths greater than twice the column depth fail to significantly increase stiffness. Plots of rotational stiffness vs. embedment length developed from the continuum model are provided such that rotational stiffness may be calculated for any wide flange shape at any embedment length. Simplified equations provide a simpler way for engineers to estimate the same information.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Tryon, Joshua Edwin, "Simple Models for Estimating the Rotational Stiffness of Steel Column-to-Footing Connections" (2016). Theses and Dissertations. 5822.
https://scholarsarchive.byu.edu/etd/5822
Date Submitted
2016-03-01
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd8403
Keywords
steel column-to-footing connections, stiffness, embedment, beam on elastic foundation, modeling, foundations, modulus of subgrade reaction
Language
english