Abstract

In this thesis, the successful fabrication of 3D-printed microfluidic devices will be discussed. Fabrication is performed with a low-cost commercially available stereolithographic 3D printer utilizing a custom PEGDA resin formulation tailored for low non-specific protein adsorption based on my colleagues' work [Rogers et al., Anal. Chem. 83, 6418 (2011)]. Horizontal microfluidic channels with designed rectangular cross sectional dimensions as small as 300 um wide and 150 um tall are printed with 100% yield, as are cylindrical vertical microfluidic channels with 300 um designed (334 um actual) diameters. Moreover, two different resins developed by our group are utilized in the process of 3D-printing which is the novel aspect about this thesis since other groups have not done research on this aspect of 3D-printing.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2015-05-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd7718

Keywords

Microfluidics, polyethylene glycol diacrylate (PEGDA), stereolithography, 3D-printing

Language

english

Share

COinS