Abstract

As objects move, their changing shape produces a signature that can be measured by a radar system. That signature is called the micro-Doppler signature. The micro-Doppler signature of an object is a distinguishing characteristic for certain classes of objects. In this thesis features are extracted from the micro-Doppler signature and are used to classify objects. The scope of the objects is limited to humans walking and traveling vehicles. The micro-Doppler features are able to distinguish the two classes of objects. With a sufficient amount of training data, the micro-Doppler features may be used with learning algorithms to predict unknown objects detected by the radar with high accuracy.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2013-06-24

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd6325

Keywords

Doppler radar, feature extraction, Doppler measurement, Doppler effect, classification algorithms

Language

English

Share

COinS