Abstract
The total character of a finite group G is the sum of the irreducible characters of G. When the total character of a finite group can be written as a monic polynomial with integer coefficients in an irreducible character of G, we say that G is a total character group. In this thesis we examine the total character of the dicyclic group of order 4n, the non-abelian groups of order p^3, and the symmetric group on n elements for all n ≥ 1. The dicyclic group of order 4n is a total character group precisely when n is congruent to 2 or 3 mod 4, and the associated polynomial is a sum of Chebyshev polynomials of the second kind. The irreducible characters paired with these polynomials are exactly the faithful characters of the dicyclic group. In contrast, the non-abelian groups of order p^3 and the symmetric group on n elements with n ≥ 4 are not total character groups. Finally, we examine the special case when G is a total character group and the polynomial is of degree 2. In this case, we say that G is a quadratic total character group. We classify groups which are both quadratic total character groups and p-groups.
Degree
MS
College and Department
Physical and Mathematical Sciences; Mathematics
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Kennedy, Chelsea Lorraine, "Total Character Groups" (2012). Theses and Dissertations. 3313.
https://scholarsarchive.byu.edu/etd/3313
Date Submitted
2012-07-03
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd5416
Keywords
character, total character, symmetric group, p-group
Language
English