Abstract
Lamina emergent mechanisms (LEMs) can provide a way to meet the demand for more compact and inexpensive mechanisms. Previous research has developed LEM designs and identified applications for them, but many applications would benefit from suitable actuation techniques. This thesis presents the design considerations and a variety of applicable methods for internal and external LEM actuation in the macro scale. Integrated LEM actuator possibilities have been identified, each with its advantages and disadvantages depending on the application. Shape memory alloys are especially compatible with LEMs. Traditional actuators have also been discussed as a way of actuating a LEM from the outside for cases in which space constraints allow it. The feasibility of new internal actuators using basic actuation principles, especially flat solenoids, has been explored. The magnetic field distribution along the axis of a high-aspect-ratio solenoid has been derived. Analytical and experimental results show that the output force of a high-aspect-ratio solenoid is suitable for LEMs. A pseudo-solenoid conceptual prototype was manufactured and evaluated, revealing challenges for which solutions have been recommended.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Mechanical Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Black, Justin Durant, "Evaluation and Development of Actuators for Lamina Emergent Mechanisms with Emphasis on Flat Solenoids" (2012). Theses and Dissertations. 3208.
https://scholarsarchive.byu.edu/etd/3208
Date Submitted
2012-04-24
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd5217
Keywords
Justin Black, lamina emergent mechanism, compliant mechanism, flat, integrated, actuator, actuation, solenoid, pseudo-coil
Language
English