Abstract
Due to the endangerment of the June sucker (Chasmistes liorus), the lower two miles of Hobble Creek, Utah has been the focus of several restoration efforts. The portion of the creek between Interstate 15 and Utah Lake has been moved into a more "natural" channel and efforts are now being made to expand restoration to the east side of the freeway. This thesis reports on three different parts of a sedimentological analysis performed on Hobble Creek. The first part is a data set that contains information about the particle size distribution on the bed of Hobble Creek between 400 W and Interstate 15 in Springville, Utah. Particle size distributions were obtained for eleven sub-reaches within the study section. Particle size parameters such as D50 were observed to decrease from an average of 72 mm to 24 mm downstream from the 1650 W crossing and Packard Dam. Streambed armoring was observed along most of the reach. This data set can be used as input for PHABSIM software to determine the location and availability of existing spawning material for June sucker during a range of flows. The second part of this thesis compares predictions from four bed-load transport models to bed-load transport data measured on Hobble Creek. In general, the Meyer-Peter, Muller and Bathurst models overpredicted sediment transport by several orders of magnitude while the Rosgen and Wilcock methods (both calibrated models) were fairly accurate. Design channel dimensions resulting from the bed-load transport predictions diverged as a function of discharge. Once validated, the models developed in this section can be used by design engineers to better understand sediment transport on Hobble Creek. The models may also be applied to other Utah Lake tributaries. The third section of the thesis introduces a detailed survey data set that covers the Hobble Creek floodplain on the shifted section between Interstate 15 and Utah Lake with an approximate 10 foot resolution grid. Water surface elevations at two flows, along with invert, fence, saddles, and other points, are labeled in the survey. A comparison with a survey completed last year did not reveal any significant lateral changes caused by the 2010 spring runoff. Due to the potential importance of the side ponds to June sucker survival, this data set can be used to monitor sedimentation in the side ponds. It may also be used in a GSSHA model to determine the magnitude of flow that is required before each side pond will be connected to the main channel.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Dutson, Andrew S., "A Multifaceted Sedimentological Analysis on Hobble Creek" (2011). Theses and Dissertations. 2625.
https://scholarsarchive.byu.edu/etd/2625
Date Submitted
2011-04-15
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd4380
Keywords
Andrew Dutson, Hobble Creek, June sucker, particle size distribution, bed-load transport
Language
English