Abstract
The purpose of this research was to identify the types of joints available for use on concrete bridge decks and to investigate the performance characteristics of each type, including primary functions and movement ranges. Eleven reports on joint performance published by state departments of transportation and universities nationwide were analyzed in order to obtain information on joint performance problems typically encountered by state transportation agencies. In addition, test methods and specifications provided by the American Society for Testing and Materials (ASTM) were reviewed for application by bridge engineers to ensure the adequacy of deck joints.
The research indicates that compression seals should be used to accommodate movements less than 2 in., while strip seals should be used for movements up to 4 in. A lubricant conforming to ASTM D 4070, Standard Specification for Adhesive Lubricant for Installation of Preformed Elastomeric Bridge Compression Seals in Concrete Structures, should be applied during installation of compression and strip seals. Finger joints with troughs should be used instead of reinforced elastomeric joints and modular elastomeric joints for movements greater than 4 in. To maximize the performance of finger joints, ensuring adequate structural properties of the finger plates and proper installation of the troughs is necessary.
When Utah Department of Transportation (UDOT) engineers conduct in-house experiments on bridge deck joints in the future, they should be more consistent and provide more information about the bridge structures in reports, including, for example, the anticipated deck movements, average daily traffic, and design loads for the bridges. Also, UDOT should establish a consistent evaluation program for investigating joint products during the approval process. The program should include quantitative measurements including, but not limited to, debris accumulation, adhesion and cohesion of the joint material, condition of anchorages and header materials, watertightness of the joints, condition of the concrete edges of the deck, deterioration of substructures, ride quality, noise level under travel, and general appearance of the joints. These experimental data should then be thoroughly documented in the resulting reports.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Yuen, Lik Hang, "Performance of Concrete Bridge Deck Joints" (2005). Theses and Dissertations. 236.
https://scholarsarchive.byu.edu/etd/236
Date Submitted
2005-01-04
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd674
Keywords
concrete bridge deck joints, joints, performance, design, installation, maintenance
Language
English