Abstract

In eubacteria, stalled ribosomes are rescued by a conserved quality-control mechanism involving transfer-messenger RNA (tmRNA) and its protein partner SmpB. Mimicking a tRNA, tmRNA enters stalled ribosomes, adds Ala to the nascent polypeptide, and serves as a template to encode a short peptide that tags the nascent protein for destruction. To further characterize the tagging process, we developed two genetic selections that link tmRNA activity to cell death. These negative selections can be used to identify inhibitors of tagging or to identify mutations in key residues essential for ribosome rescue. Little is known about which ribosomal elements are specifically required for tmRNA activity. Using these selections, we isolated ribosomal RNA mutations that block the rescue of ribosomes stalled at rare Arg codons or at the inefficient termination signal Pro-opal. We find that deletion of A1150 in the 16S rRNA blocks tagging regardless of the stalling sequence, suggesting that it inhibits tmRNA activity directly. The C889U mutation in 23S rRNA, however, lowers tagging levels at Pro-opal and rare Arg codons but not at the 3'-end of an mRNA lacking a stop codon. We conclude that the C889U mutation does not inhibit tmRNA activity per se but interferes with an upstream step intermediate between stalling and tagging.

Degree

MS

College and Department

Physical and Mathematical Sciences; Chemistry and Biochemistry

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2010-04-13

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd3535

Keywords

rRNA, ribosome, helix 38, A-site finger, tmRNA, SmpB, trans-translation

Language

English

Share

COinS