Abstract
Optical fibers are increasingly being used to create sensing devices. The D-fiber has an elliptical core and exhibits birefringence. This birefringence can be used to create a polarimetric sensor. The elliptical core supports two orthogonal modes that have separate effective indices of refraction. The indices of refraction change with a change in temperature. Since the effective indices of refraction change differently for the two modes, the birefringence also changes. This change in birefringence can be seen as a change in detected power through the fiber through the use of polarizers. The fiber then becomes a temperature sensor. The sensitivity of the fiber can be enhanced by replacing a section of the core of the fiber with a sensing material. With the sensing material in the core of the fiber, it has direct interaction with the light and strongly affects it. A polarimetric temperature sensor is created by replacing a section of the core with a polymer, which is sensitive to temperature. The core-replaced fiber in a polarimetric sensing configuration is compared to a a unetched fiber set up in the same way. The core-replaced fiber sensor is five times as sensitive to temperature as an unetched fiber.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Ipson, Benjamin L., "Polarimetric Temperature Sensor Using Core-replaced Fiber" (2004). Theses and Dissertations. 205.
https://scholarsarchive.byu.edu/etd/205
Date Submitted
2004-11-23
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd606
Keywords
optical fiber, D-fiber, sensor, polarimetric, temperature
Language
English