Abstract

The influence of soil water repellency (WR) on vegetation recovery after a fire is poorly understood. This dissertation presents strategies to broaden opportunities for enhanced post-fire rangeland restoration and monitoring of burned piñon and juniper (P-J) woodlands by: 1) mapping the extent and severity of critical and subcritical WR, 2) determining the influence of WR on soil ecohydrologic properties and revegetation success, and 3) evaluating the suitability of a wetting agent composed of alkylpolyglycoside-ethylene oxide/propylene oxide block copolymers as a post-fire restoration tool for ameliorating the effects of soil WR and increasing seedling establishment. Results indicate that:

• Post-fire patterns of soil WR were highly correlated to pre-fire P-J woodland canopy structure. Critical soil WR levels occurred under burned tree canopies while sub-critical WR extended out to approximately two times the canopy radius. At sites where critical soil WR was present, infiltration rate, soil moisture, and vegetation cover were significantly less than at non-hydrophobic sites. These parameters were also reduced in soils with subcritical WR relative to non-hydrophobic soils (albeit to a lesser extent). Aerial photography coupled with feature extraction software and geographic information systems (GIS) proved to be an effective tool for mapping P-J cover and density, and for scaling-up field surveys of soil WR to the fire boundary scale.
• Soil WR impairs seed germination and seedling establishment by decreasing soil moisture availability by reducing infiltration, decreasing soil moisture storage capacity, and disconnecting soil surface layers from underlying moisture reserves. Consequently, soil WR appears to be acting as a temporal ecological threshold by impairing establishment of desired species within the first few years after a fire.
• Wetting agents can significantly improve ecohydrologic properties required for plant growth by overcoming soil WR; thus, increasing the amount and duration of available water for seed germination and seedling establishment. Success of this technology appears to be the result of the wetting agent increasing soil moisture amount and availability by 1) improving soil infiltration and water holding capacity; and 2) allowing seedling roots to connect to underling soil moisture reserves.

Degree

PhD

College and Department

Life Sciences; Plant and Wildlife Sciences

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2009-12-17

Document Type

Dissertation

Handle

http://hdl.lib.byu.edu/1877/etd3361

Keywords

restoration, revegetation, surfactants, water repellency, wetting agents, wildfire, weed suppression, aerial photography, geographic information systems, GIS, remote sensing, piñon, pinyon, juniper, woody plant encroachment, rangeland monitoring, soil water content, unsaturated hydraulic conductivity, anchor chaining, hydrophobicity, subcritical water repellency

Language

English

Share

COinS