Abstract
Clinical drug trials are costly and time-consuming. Bayesian methods alleviate the inefficiencies in the testing process while providing user-friendly probabilistic inference and predictions from the sampled posterior distributions, saving resources, time, and money. We propose a dynamic linear model to estimate the mean response at each dose level, borrowing strength across dose levels. Our model permits nonmonotonicity of the dose-response relationship, facilitating precise modeling of a wider array of dose-response relationships (including the possibility of toxicity). In addition, we incorporate an adaptive approach to the design of the clinical trial, which allows for interim decisions and assignment to doses based on dose-response uncertainty and dose efficacy. The interim decisions we consider are stopping early for success and stopping early for futility, allowing for patient and time savings in the drug development process. These methods complement current clinical trial design research.
Degree
MS
College and Department
Physical and Mathematical Sciences; Statistics
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Leininger, Thomas J., "An Adaptive Bayesian Approach to Dose-Response Modeling" (2009). Theses and Dissertations. 1953.
https://scholarsarchive.byu.edu/etd/1953
Date Submitted
2009-12-04
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd3325
Keywords
dynamic linear models, Markov chain Monte Carlo (MCMC), Gibbs sampling, Phase II clinical drug trials, adaptive trial design
Language
English