Abstract
This paper describes methods to track a user-defined point in the vision of a robot as it drives forward. This tracking allows a robot to keep itself directed at that point while driving so that it can get to that user-defined point. I develop and present two new multi-scale algorithms for tracking arbitrary points between two frames of video, as well as through a video sequence. The multi-scale algorithms do not use the traditional pyramid image, but instead use a data structure called an integral image (also known as a summed area table). The first algorithm uses edge-detection to track the movement of the tracking point between frames of video. The second algorithm uses a modified version of the Moravec operator to track the movement of the tracking point between frames of video. Both of these algorithms can track the user-specified point very quickly. Implemented on a conventional desktop, tracking can proceed at a rate of at least 20 frames per second.
Degree
MS
College and Department
Physical and Mathematical Sciences; Computer Science
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Arthur, Richard B., "Vision-Based Human Directed Robot Guidance" (2004). Theses and Dissertations. 190.
https://scholarsarchive.byu.edu/etd/190
Date Submitted
2004-10-11
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd564
Keywords
computer, machine vision, machine learning, video, point tracking, visual servoing, integral image, summed area table, minimal edit distance, Moravec operator
Language
English