Abstract
Because of the huge amounts of data made available by the technology boom in the late twentieth century, new methods are required to turn data into usable information. Much of this data is categorical in nature, which makes estimation difficult in highly multivariate settings. In this thesis we review various multivariate statistical methods, discuss various statistical methods of natural language processing (NLP), and discuss a general class of models described by Erosheva (2002) called generalized mixed membership models. We then propose extensions of the information partition function (IPF) derived by Engler (2002), Oliphant (2003), and Tolley (2006) that will allow modeling of discrete, highly multivariate data in linear models. We report results of the modified IPF model on the World Health Organization's Survey on Global Aging (SAGE).
Degree
MS
College and Department
Physical and Mathematical Sciences; Statistics
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Cannon, Paul C., "Extending the Information Partition Function: Modeling Interaction Effects in Highly Multivariate, Discrete Data" (2007). Theses and Dissertations. 1234.
https://scholarsarchive.byu.edu/etd/1234
Date Submitted
2007-12-28
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd2263
Keywords
Information Partition Function, interaction effects, multivariate analysis, discrete data, Natural Language Processing
Language
English