Abstract

This work primarily centers on measuring the physical properties of molten salts. It's dedicated to outlining the methodology, enhancing measurement methods, and scrutinizing data to uncover insights regarding the interaction between molten salt and solid structures in the context of designing and generating electrical energy in molten salt reactors. The initial phase of this research involved collaborating with Brigham Young University's molecular dynamics simulation group to create an Archimedean density measurement device. This endeavor was primarily geared towards generating empirical data for the purpose of enhancing molecular dynamics simulation data. The tasks encompassed designing and validating the experimental setup, with a particular focus on measuring the densities of a novel salt composition--FMgNaK, a prospective nuclear fuel salt fuel/coolant. In the next chapter, we delve into the development, validation, and significant improvement of the rotational Couette viscosity measurement method at high temperatures. Originally designed for room temperature conditions, the methodology failed to account for the substantial temperature difference between the calibration fluids and the molten salts. Consequently, we introduce a theory aimed at correcting errors stemming from the thermal expansion of the solid container material during the transition from calibration to high temperature fluid measurement. As part of this comprehensive discussion, we also present the correction applied during the validation testing of the viscosity setup, with a specific focus on a nitrate salt known as solar salt. The final experiment development centered on the creation and validation of the Axisymmetric Drop-Shape Analysis (ADSA) method for use with molten salt. However, working with a specific nitrate salt, known as solar salt, posed challenges due to its propensity to wet all common high temperature substrates. This high degree of wetting posed hindrances to several physical properties measurements. Therefore, the primary objective of this work was to identify a non-wetting substrate to enhance the accuracy of ADSA and other measurement methods. Within this context, we present the results of surface tension and contact angle measurements, which were derived from the ADSA method, and the development of a non-wetting substrate for use with solar salt. In the final stage of this research, the ADSA method was applied to FLiBe, a critical fluoride salt in molten salt nuclear reactor design, and tellurium-bearing FLiBe to examine its interaction with boron nitride, a key solid porous material used in reactor vessel structures. Surface tension and contact angle measurements were conducted on various substrates, revealing the influence of oxygen on boron nitride wetting. Additionally, the study confirmed that tellurium, despite its chemical similarity to oxygen, did not significantly affect surface tension or contact angle, ruling out a substantial impact on boron nitride infiltration. The chapter also presents comprehensive data on the surface tension and densities of FLiBe, FLiNaK, and the chloride salt NaCl-KCl.

Degree

PhD

College and Department

Ira A. Fulton College of Engineering; Chemical Engineering

Rights

https://lib.byu.edu/about/copyright/

Date Submitted

2023-11-29

Document Type

Dissertation

Handle

http://hdl.lib.byu.edu/1877/etd13429

Keywords

Archimedean density, molten salt, FLiBe, solar salt, viscosity, surface tension, axisymmetric drop-shape analysis, contact angle, boron nitride

Language

english

Included in

Engineering Commons

Share

COinS