Abstract
This thesis explores the structures and structural changes of supramolecular host-guest systems, proteins, and other small molecules in the gas phase, utilizing a combination of computational modeling and experimental data. The primary instruments employed were a Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) and an ion mobility mass spectrometer (IM-MS). In the IM-MS experiments, the focus was on investigating the binding behavior of cyclodextrin macrocycles—specifically α, β, and γ-cyclodextrin—with per-fluoroalkane substances (PFAS), which are pervasive environmental contaminants. This investigation involved measuring ion-neutral collision cross sections and using computational modeling to determine whether PFAS compounds bind inside or outside the cyclodextrin cavity. The results indicate that only β-cyclodextrin binds PFAS compounds internally, attributed to its seven-fold symmetry and the localized hydrogen bonding network across the macrocycle's secondary face. Conversely, α and γ-cyclodextrin appear to favor collapsing inward, enhancing internal hydrogen bonding while keeping the PFAS bound externally. The FTICR-MS instrument was used for time-resolved CRAFTI (TR-CRAFTI) collision cross section measurements on various systems, including tetraalkylammoniums (TAA), cytochrome C, and β-cyclodextrin host-guest complexes. This involved activating gas-phase ions using sustained off-resonance irradiation (SORI) activation, followed by a variable delay for collisional cooling. Subsequently, a CRAFTI measurement was conducted to obtain a timeresolved view of the collision cross section. Initial findings suggest the feasibility of measuring and modeling structural changes post-activation over varying time scales, ranging from approximately 100 milliseconds to 10 seconds, depending on the size and complexity of the system being studied.
Degree
MS
College and Department
Computational, Mathematical, and Physical Sciences; Chemistry and Biochemistry
Rights
https://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Mismash, Noah, "Investigation of Collision Cross Sections & Time-Resolved Structural Modification of Biomolecules, Host-Guest Systems, & Small Molecules Using Ion Mobility & Fourier Transform Ion Cyclotron Resonance Mass Spectrometry" (2024). Theses and Dissertations. 10408.
https://scholarsarchive.byu.edu/etd/10408
Date Submitted
2024-06-06
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd13246
Keywords
Ion mobility, cyclodextrin, PFAS, FTICR-MS, CID, CRAFTI, refolding
Language
english