Abstract
Soil salinity is an increasing problem facing agriculture in many parts of the world. Climate change and irrigation practices have led to decreased yields of large areas of farmland due to increased salt levels in the soil. Irrigation introduces salts to the soil that with time accumulate and threaten crop yield. In arid climates like Utah, the practice of irrigation is especially threatening to salt-sensitive crops including alfalfa (Medicago sativa). Plants that have tolerance to salt are needed to feed livestock and the world's population. One approach to address this problem is to introduce genes encoding salt tolerance into the genomes of salt-sensitive plants through genetic engineering, but this approach has limitations. These limitations include the misinformed public perception of genetically modified organisms (GMOs). Even if the GMO salt-tolerant plants could produce palatable foods, in regions of the world with saline soils incongruous with farming, if consumers refuse to purchase the food then the engineering and upfront costs of production are negated. Another fairly new approach involves the isolation and development of salt-tolerant (halophilic) plant-associated bacteria. Several reports are now available demonstrating how the use of halophilic inoculants enhance plant growth in salty soil. This enhanced plant growth is most likely associated with changes in plant gene expression; however, the mechanisms behind this growth stimulation are not yet clear. Halomonas elongata 1H9, a rhizobacteria native to Goshen UT, has been identified as a plant growth-promoting rhizobacteria (PGPR) when used as an inoculant added to alfalfa seedlings grown in salty soils. Plants grown in the presence of this Halomonas sp. and 1% salt demonstrated an average increase of 2.4x the biomass of alfalfa plants grown without inoculum in salty soils. This suggests that this Halomonas sp. positively influences plant salt tolerance, which raises the question as to how the bacteria stimulate plant growth under these conditions. To identify and characterize plant genes induced by Halomonas elongata, transcriptional analysis was performed using RNA-sequencing (RNA-seq). This analysis identified a variety of differentially expressed genes (DEGs) including transcription factors (e.g. MYB14, GATA transcription factor 9, Ethylene-responsive transcription factors ER017 and ER109) and plant enzymes involved in growth and development (e.g. xyloglucan endotransglucosylase and phosphodiesterase). This was followed by gene validation via real-time quantitative PCR (RT-qPCR), the gold standard for RNA-seq validation, however this process was never successfully completed. Suggestions for next steps are included in the discussion section of chapter 3.
Degree
MS
College and Department
Life Sciences
Rights
https://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Miller, Ashley Kay, "Exploring the Role of Salt-Tolerant Halomonas Inoculant in Altering Plant Gene Expression to Improve Salt Tolerance in Alfalfa." (2023). Theses and Dissertations. 10080.
https://scholarsarchive.byu.edu/etd/10080
Date Submitted
2023-08-14
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd12918
Keywords
Halomonas, halophyte, halophile, halotolerant, alfalfa, differential gene expression, salt-stress, glycophyte
Language
english