•  
  •  
 

Abstract

Disturbance events can significantly influence net CO2 exchange (NCE) in ecosystems. High densities of Anabrus simplex (Mormon crickets) periodically afflict large areas of the western USA; their sheer numbers could make them a significant source of CO2. We modeled cricket respiration at the ecosystem level using air and body temperatures and insect gas exchange measurements. Cricket CO2 efflux values were compared to ecosystem CO2 flux from eddy covariance measurements in 3 Great Basin ecosystems: a juniper woodland, a sagebrush shrubland, and a crested wheatgrass pasture. Mean respiration from Mormon crickets was 0.96 g CO2 · m−2d−1. Since Mormon crickets are present when NCE is otherwise near 0, they can potentially alter NCE between 20% (juniper woodland) and 60% (crested wheatgrass pasture). Transient pests such as Mormon crickets can be an important component of NCE.

Share

COinS