Degree Name
BS
Department
Manufacturing Engineering
College
Ira A. Fulton College of Engineering and Technology
Defense Date
2020-03-11
Publication Date
2020-03-20
First Faculty Advisor
Dr. Andy George
First Faculty Reader
Dr. Yuri Hovanski
Honors Coordinator
Dr. Mike Miles
Keywords
composites, recycling, pyrolysis, sustainability, carbon, fiber
Abstract
Composites are unique materials in many respects. When fabric woven from carbon fibers is joined with a thermoset resin in a controlled environment, it results in a very strong material, especially evaluated on a pound-for-pound basis against metals and ceramics. One aspect of this construction that provides great strength lies in the fiber-matrix adhesion which facilitates load transfer to the reinforcement of the composite. This fiber-matrix adhesion is promoted by the polarity of the usual thermoset matrices, and properly designed sizing materials coating the fibers. It’s a two-edged sword, though. Although the resin and the fibers are quite strong together, they are very difficult to pull apart once they’re formed, in order to recover the materials and use them again in the future. The crosslinked nature of thermoset matrices dictates combustion as the most viable option for separation of the constituents. As such, composite structures formed with industry-standard thermoset resins have a single-use lifespan. The least expensive end-use option is simply landfill disposal. However, by isolating the dry fibers by burning off the resin (a process called pyrolysis), the fibers are able to be reclaimed and processed again in useful ways. This study focuses on pyrolysis and ways to optimize its process for use of reclaimed carbon fiber. The aim is to showcase its environmentally-friendly capabilities through making new composite structures with fibers reclaimed via pyrolysis to lessen landfill waste.
BYU ScholarsArchive Citation
Jacobs, Matt, "Novel Methods For Composites Recycling Via Pyrolysis" (2020). Undergraduate Honors Theses. 129.
https://scholarsarchive.byu.edu/studentpub_uht/129
Handle
http://hdl.lib.byu.edu/1877/uht0129