Keywords
aspen, associational resistance, biodiversity, climate change, carbon sequestration, Engelmann spruce, microbial biomass, phenology, plant growth, seed count, snow, snowmelt, soil moisture, soil organic matter, soil respiration, subalpine
Abstract
This document reports the results of 4 studies of subalpine ecosystem ecology, describing ways that spatial heterogeneity in soils and plant communities mediate ecosystem responses to environmental change. Ecosystem responses to environmental change are also mediated by regional climate patterns and interannual variability in weather. In the first chapter we report the results of an experiment to test for the mediating effects of associational resistance in a forest community that experienced wide-spread beetle kill. We found that Engelmann spruce were more likely to survive a beetle outbreak when growing in low densities (host dilution) and not through other types of associational resistance that relate to higher tree-species richness or greater phylogenetic diversity of the forest community. In the second chapter we report the effects of early snowmelt on soil moisture in subalpine meadow and aspen communities. We found that soil organic matter, soil texture, and forest cover mediated the effects of early snowmelt and were more important drivers of growing-season soil moisture than was snow-free date. In the third chapter we report the effect of early snowmelt on growth and seed production of early-season and midsummer herbaceous species. We found that the primary effect that snowmelt timing had on plant growth was through its effect on species distribution. Changes in the timing of snowmelt had limited effect on the growth, flowering, and seed count of species after they were established. In the final chapter, we report the effect of early snowmelt on soil respiration, microbial biomass, dissolved organic carbon and soil organic carbon. We found that early snowmelt resulted in warmer soil temperatures compared to neighboring snow-cover plots, and that microbial biomass and soil respiration showed no signs of a snowmelt legacy effect during the growing season. Soil organic carbon in rapid and slow-turnover pools was affected more by plant community than by snowmelt timing, and the primary drivers of soil respiration during the snow-free period were first soil organic matter and second soil temperature. Taken together, this dissertation reports our findings that subalpine ecosystems are resilient to environmental change in part because organisms in these systems are adapted to environmental conditions that are highly variable between sites, seasons, and years.
BYU ScholarsArchive Citation
Conner, Lafe G., "Environmental and Adaptive Buffers that Mediate the Response of Subalpine Ecosystems to Environmental Change" (2015). Student Works. 164.
https://scholarsarchive.byu.edu/studentpub/164
Document Type
Peer-Reviewed Article
Publication Date
2015-06-01
Permanent URL
http://hdl.lib.byu.edu/1877/etd7860
Language
english
College
Life Sciences
Department
Biology
Copyright Status
2015-06
Copyright Use Information
I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, and specifically allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to Brigham Young University and its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation, or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.