Publication Date
2005
Keywords
Spatial analysis, temporal analysis, stormwater, Event Mean Concentration, geostatistics, pollutants
Abstract
Urban stormwater non-point source pollutants are recognized as a major cause of receiving waters quality deterioration. To date most research has focused on specifying temporal variations of stormwater quality parameters which includes high uncertainties and also increases the risk of pollution control structures failure. Traditionally, the temporal variations of quality parameters in forms of either pollutograph or Event Mean Concentration (EMC) is obtained by sampling stormwater at the outlet of urban catchments for quality analysis in addition to measurement of flow rate over years. Spatial variations of the runoff quality are the key factor in non-point source pollution studies. This research investigates spatial variability of urban runoff quality parameters such as Total Phosphorous (TP), Total Nitrogen (TN), Suspended Solids (SS) and Biochemical Oxygen Demands (BOD) in relation to land use of urban catchments. In spatial analysis, stormwater will be sampled over the whole catchment area for a number of rainfall events during a year without any requirement to measure flow rate. This research showed comparable results for average pollutant concentrations with those of other urban catchments in Australia where traditional sampling method was used. The research outcomes will reliably estimate pollutants concentration for improved and efficient design of pollution control structures for each land use.
BYU ScholarsArchive Citation
(2005)
"Spatial Analysis of Urban Stormwater Quality,"
Journal of Spatial Hydrology: Vol. 5:
No.
1, Article 3.
Available at:
https://scholarsarchive.byu.edu/josh/vol5/iss1/3