Keywords

on-chip sensing, polysilicon, piezoresistive resistance

Abstract

The objective of this work is to demonstrate the feasibility of on-chip sensing of bistable mechanism state using the piezoresistive properties of polysilicon, thus eliminating the need for electrical contacts. Changes in position are detected by observing changes in resistance across the mechanism. Sensing the state of bistable mechanisms is critical for various applications, including high-acceleration sensing arrays and alternative forms of nonvolatile memory. A fully compliant bistable micro mechanism was designed, fabricated, and tested to demonstrate the feasibility of this sensing technique. Testing results from two fabrication processes, SUMMiT IV and MUMPs, are presented. The SUMMiT mechanism was then integrated into various Wheatstone bridge configurations to investigate their potential advantages and to demonstrate various design layouts. Repeatable and detectable results were found with independent mechanisms and with those integrated into Wheatstone bridges.

Original Publication Citation

Anderson, J.K., Howell, L.L., Wittwer, J.W., and McLain, T.W., "Piezoresistive Sensing of Bistable Micro Mechanism State," Journal of Micromechanics and Microengineering, Vol. 16, No. 5, pp. 943-95, 26.

Document Type

Peer-Reviewed Article

Publication Date

2014-05-06

Permanent URL

http://hdl.lib.byu.edu/1877/1159

Publisher

Institute of Physics

Language

English

College

Ira A. Fulton College of Engineering and Technology

Department

Mechanical Engineering

Share

COinS