vortex particle method, VPM, panel method, sources, doublets, fast multipole method, FMM


Wake interactions play a significant role in aerodynamics. However, common modeling approaches are either expensive or lack fidelity, making them unreliable or difficult to use in the design process. The vortex particle method can capture the relevant physics effectively, but imposing boundary conditions with solid surfaces in a computationally efficient way is challenging. We explore two possible methods of imposing solid surface boundary conditions of vortex particle simulations. The first, a novel variation on a pure particle approach, is easy to implement but is moderately expensive, and suffers from some numerical instability. The second, source panels accelerated with a fast multipole code, is promising. This approach is not novel, but several innovations are presented for using the fast multipole method with a conglomeration of different element types (e.g. source panels, doublet panels, vortex lattice, vortex particles, etc.). Preliminary results of the pure particle approach, verification of the panel code, validation of the panel-vortex particle code for a rotor in ground effect, and benchmark comparisons with a direct solver approach are presented.

Original Publication Citation

Anderson, R. and Ning, A., “A Coupled Source Panel, Actuator Line, and Viscous Vortex Particle Method in an O(n) Scheme,” AIAA SCITECH Forum, National Harbor, MD, Jan 2023. doi: 10.2514/6.2023-1381

Document Type

Conference Paper

Publication Date







Ira A. Fulton College of Engineering


Mechanical Engineering

University Standing at Time of Publication

Associate Professor