Monte Carlo simulation, nonprimitive model, electrical double layer, ion-dipole mixture


Canonical Monte Carlo simulations were performed for a nonprimitive model of an electrical double layer. The ions and the solvent molecules are modeled as charged and dipolar hard spheres, respectively, while the electrode as a hard, impenetrable wall carrying uniform surface charge. We found that the ion-dipole model gives a reasonable description of the double layer for partially charged ions with small to moderate dipole moments, or equivalently for an "effective" dielectric constant. Density, polarization and mean electrostatic potential profiles are reported. Strong layering structure, and at higher charges, charge inversion in the second layer were found. With appropriate choices of charge and solvent parameters, states corresponding to the primitive or the solvent primitive model can be produced, and the results agreed well with literature data. At higher effective charges and dipole moments, the dipolar solvent has difficulties in preventing the ions from clustering. More realistic models of water and other solvents are necessary to study the double layer

Original Publication Citation

Boda, Dezso, Kwong Y. Chan, and Douglas Henderson."Monte Carlo simulation of an ion-dipole mixture as a model of an electrical double layer." The Journal of Chemical Physics 19 (1998): 7362-7371.

Document Type

Peer-Reviewed Article

Publication Date


Permanent URL






Physical and Mathematical Sciences


Chemistry and Biochemistry