Keywords

eVTOL, electric vertical takeoff and landing, VPM, vortex particle method, wake interaction, urban air mobility

Abstract

Electric aircraft technology has enabled the use of multiple rotors in novel concepts for urban air mobility. However, multirotor configurations introduce strong aerodynamic and aeroacoustic interactions that are not captured through conventional aircraft design tools. In this paper we explore the capability of the viscous vortex particle method (VPM) to model multirotor aerodynamic interactions at a computational cost suitable for conceptual design. A VPM-based rotor model is introduced along with recommendations for numerical stability and computational efficiency. Validation of the individual rotor is presented in both hovering and forward-flight configurations at low, moderate, and high Reynolds numbers. Hovering multirotor predictions are compared to experimental measurements, evidencing the suitability of the proposed model to capture the thrust drop and unsteady loading produced by rotor-on-rotor interactions.

Original Publication Citation

Alvarez, E. J., and Ning, A., “High-Fidelity Modeling of Multirotor Aerodynamic Interactions for Aircraft Design,” AIAA Journal, Aug. 2020. doi:10.2514/1.J059178

Document Type

Peer-Reviewed Article

Publication Date

2020-8

Permanent URL

http://hdl.lib.byu.edu/1877/6989

Publisher

AIAA

Language

English

College

Ira A. Fulton College of Engineering and Technology

Department

Mechanical Engineering

University Standing at Time of Publication

Associate Professor

Share

COinS