Rigid-panel origami, offset panel technique


Rigid-panel origami is often mathematically modeled with idealized zero-thickness panels. When paper is used to realize an origami design, the zero-thickness models are a good approximation. However, many origami-inspired designs require the use of thicker materials that likely will not behave as the zero-thickness kinematic models predict.

The offset panel technique defined previously by the authors [Edmondson et al. 14] maintains the kinematics of a zero-thickness origami source model over its full range of motion. The offset panel technique accommodates uniform and varying panel thickness as well as offset panels or gaps between panels. The preserved kinematic behavior allows designers to select an origami model based on desired motion and instantiate it in thick materials.

In this work, we review the offset panel technique and illustrate its capabilities and limitations through several example hardware demonstrations. The examples in the paper are based on the rigidly foldable M3V twist1 shown in Figure 1. This twist tessellation was developed using the method of fold-angle multipliers [Evans et al. 15].

Original Publication Citation

Origami 6, Vol. 1, pp. 149-161

Document Type

Book Chapter

Publication Date


Permanent URL


American Mathematical Society




Ira A. Fulton College of Engineering and Technology


Mechanical Engineering