Image classification is a memory- and compute-intensive task. It is difficult to implement high-speed image classification algorithms on resource-limited systems like FPGAs and embedded computers. Most image classification algorithms require many fixed- and/or floating-point operations and values. In this work, we explore the use of binary values to reduce the memory and compute requirements of image classification algorithms. Our objective was to implement these algorithms on resource-limited systems while maintaining comparable accuracy and high speeds. By implementing high-speed image classification algorithms on resource-limited systems like embedded computers, FPGAs, and ASICs, automated visual inspection can be performed on small low-powered systems. Industries like manufacturing, medicine, and agriculture can benefit from compact, high-speed, low-power visual inspection systems. Tasks like defect detection in manufactured products and quality sorting of harvested produce can be performed cheaper and more quickly. In this work, we present ECO Jet Features, an algorithm adapted to use binary values for visual inspection. The ECO Jet Features algorithm ran 3.7x faster than the original ECO Features algorithm on embedded computers. It also allowed the algorithm to be implemented on an FPGA, achieving 78x speedup over full-sized desktop systems, using a fraction of the power and space. We reviewed Binarized Neural Nets (BNNs), neural networks that use binary values for weights and activations. These networks are particularly well suited for FPGA implementation and we compared and contrasted various FPGA implementations found throughout the literature. Finally, we combined the deep learning methods used in BNNs with the efficiency of Jet Features to make Neural Jet Features. Neural Jet Features are binarized convolutional layers that are learned through deep learning and learn classic computer vision kernels like the Gaussian and Sobel kernels. These kernels are efficiently computed as a group and their outputs can be reused when forming output channels. They performed just as well as BNN convolutions on visual inspection tasks and are more stable when trained on small models.



College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering



Date Submitted


Document Type





Image Classification, Computer Vision, FPGA, Embedded Systems, Neural Networks, BNN



Included in

Engineering Commons