Atriplex hortensis (2n = 2x = 18, 1C genome size ~1.1 gigabases), also known as garden orach, is a highly nutritious, broadleaf annual of the Amaranthaceae-Chenopodiaceae family that has spread from its native Eurasia to other temperate and subtropical environments worldwide. Atriplex is a highly complex and polyphyletic genus of generally halophytic and/or xerophytic plants, some of which have been used as food sources for humans and animals alike. Although there is some literature describing the taxonomy and ecology of orach, there is a lack of genetic and genomic data that would otherwise help elucidate the genetic variation, phylogenetic position, and future potential of this species. Here, we report the assembly of the first highquality, chromosome-scale reference genome for orach cv. ‘Golden’. Sequence data was produced using Oxford Nanopore’s MinION sequencing technology in conjunction with Illumina short-reads and chromatin-contact mapping. Genome assembly was accomplished using the high-noise, single-molecule sequencing assembler, Canu. The genome is enriched for highly repetitive DNA (68%). The Canu assembly combined with the Hi-C chromatin-proximity data yielded a final assembly containing 1,325 scaffolds with a contig N50 of 98.9 Mb and with 94.7% of the assembly represented in the nine largest, chromosome-scale scaffolds. Sixty-eight percent of the genome was classified as highly repetitive DNA, with the most common repetitive elements being Gypsy and Copia-like LTRs. The annotation was completed using MAKER which identified 31,010 gene models and 2,555 tRNA genes. Completeness of the genome was assessed using the Benchmarking Universal Single Copy Orthologs (BUSCO) platform, which quantifies functional gene content using a large core set of highly conserved orthologous genes (COGs). Of the 1,375 plant-specific COGs in the Embryophyta database, 1,330 (96.7%) were identified in the Atriplex assembly. We also report the results of a resequencing panel consisting of 21 accessions which illustrates a high degree of genetic similarity among cultivars and wild material from various locations in North America and Europe. These genome resources provide vital information to better understand orach and facilitate future study and comparison.



College and Department

Life Sciences; Plant and Wildlife Sciences



Date Submitted


Document Type





Atriplex hortensis, orach, Oxford Nanopore, DNA sequencing, proximity-guided assembly, genome assembly