Radio frequency interference (RFI) is a growing problem for radio astronomers. One potential solution utilizes spatial filtering by placing an array of electrically small antennas at the focal plane of a parabolic reflector. This thesis documents the design and characterization of a prototype array feed and RF receiver that were used to demonstrate the spatial filtering principle. The array consists of a 7-element hexagonal arrangement of thickened dipole antennas tuned to a center frequency of 1600 MHz. The receiver is a two-stage, low-noise frequency mixer that is tunable over the entire L-band. This thesis also documents a new receiver design that is part of an upgrade to the outdoor antenna test range for the National Radio Astronomy Observatory in Green Bank, West Virginia. The array feed was demonstrated on a three-meter parabolic reflector by recovering a weak signal of interest that was obscured by a strong, broadband interferer. Similar results were also obtained when the interferer moved with an angular velocity of 0.1 degree per second, but only when the power in the interferer dominated the signal. The aperture efficiency was measured at 64%, but adaptive beamformers can slightly perturb this value through distortions in the beam pattern. This phenomenon, called pattern rumble, effectively reduced the sensitivity of the radio telescope, and was measured by comparing the SNRs of adaptive beamformers to the SNR of a fixed-weight beamformer. It was found that pattern rumble can reduce the useful integration time by roughly one order of magnitude. It was also found that mechanical instability of the primary reflector introduces a great deal of pattern rumble, even when the interferer is fixed in direction.



College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering



Date Submitted


Document Type





radio astronomy, array feeds, focal plane arrays, beamforming, RFI mitigation