Abstract
This thesis consists of a thermodynamically based kinetic model that more accurately predicts grain boundary mobility (GBM) over a large range of thermodynamic states including changes in temperature, pressure and shear stress. The form of the model was validated against calculated GBM values for Al bicrystals via molecular dynamics (MD) simulations. A total of 98,786 simulations were performed (164 different GBs, each with a minimum of 250 different thermodynamic states, and 2 different driving forces). Methodology for the computation of the GBM via MD simulations is provided. The model parameters are directly linked to extensive thermodynamic quantities and suggest potential mechanisms for GBM under combined thermal and triaxial loads. This thesis also discusses the influence of GB character on the thermodynamic mobility parameters. The resulting insights about GB character and thermodynamic state on GBM suggest an opportunity to achieve designed microstructures by controlling thermodynamic state during microstructure evolution.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Mechanical Engineering
BYU ScholarsArchive Citation
Lontine, Derek Michael, "Stress Modulated Grain Boundary Mobility" (2018). Theses and Dissertations. 7348.
https://scholarsarchive.byu.edu/etd/7348
Date Submitted
2018-04-01
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd9937
Keywords
material science, grain boundary engineering, grain boundary mobility, molecular dynamics, high pressure, ultra-high pressure, grain growth, shear coupling
Language
english