The rapid development of optofluidics, the combination of microfluidics and integrated optics, since its formal conception in the early 2000's has aided in the advance of single-molecule analysis. The optofluidic platform discussed in this dissertation is called the liquid core anti-resonant reflecting optical waveguide (LC-ARROW). This platform uses ARROW waveguides to orthogonally intersect a liquid core waveguide with solid core rib waveguides for the excitation of specifically labeled molecules and collection of fluorescence signal. Since conception, the LC-ARROW platform has demonstrated its effectiveness as a lab-on-a-chip fluorescence biosensor. However, until the addition of optical multiplexing excitation waveguides, the platform lacked a critical functionality for use in rapid disease diagnostics, namely the ability to simultaneously detect different types of molecules and particles. In disease diagnostics, the ability to multiplex, detect and identify multiple biomarkers simultaneously is paramount for a sensor to be used as a rapid diagnostic system. This work brings optofluidic multiplexing to the sensor through the implementation of three specific designs: (1) the Y-splitter was the first multi-spot excitation design implemented on the platform, although it did not have the ability to multiplex it served as a critical stepping stone and showed that multi-spot excitation could improve the signal-to-noise ratio of the platform by ~50,000 times; (2) a multimode interference (MMI) waveguide which took the multi-spot idea and then demonstrated spectral multiplexing capable of correctly identifying multiple diverse biomarkers simultaneously; and, (3) a Triple-Core design which incorporates excitation and collection along multiple liquid cores, enabling spatial multiplexing which increases the number of individual molecules to be identified concurrently with the MMI waveguide excitation. In addition to describing the development of optical multiplexing, this dissertation includes an investigation of another LC-ARROW based design that enables 2D bioparticle trapping, the Anti-Brownian Electrokinetic (ABEL) trap. This design demonstrates two-dimensional compensation of a particle's Brownian motion in solution. The capability to maintain a molecule suspended in solution over time enables the ability to gain a deeper understanding of cellular function and therapies based on molecular functions.



College and Department

Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering



Date Submitted


Document Type





Matthew Alan Stott, Aaron Hawkins, optofluidics, single-molecule analysis, fluorescence, biosensor, lab-on-a-chip, integrated optics, microfluidics, multimode interference waveguides, Y-splitter waveguides, Anti-Brownian Electrokinetic trap, ARROWs, microfabrication, optofluidic multiplexing