Finite element analysis (FEA) software is used to obtain linear and non-linear solutions to one, two, and three-dimensional (3-D) geometric problems that will see a particular load and constraint case when put into service. Parametric FEA models are commonly used in iterative design processes in order to obtain an optimum model given a set of loads, constraints, objectives, and design parameters to vary. In some instances it is desirable for a designer to obtain some intuition about how changes in design parameters can affect the FEA solution of interest, before simply sending the model through the optimization loop. This could be accomplished by running the FEA on the parametric model for a set of part family members, but this can be very timeconsuming and only gives snapshots of the models real behavior. The purpose of this thesis is to investigate a method of visualizing the FEA solution of the parametric model as design parameters are changed in real-time by approximating the FEA solution using surrogate modeling methods. The tools this research will utilize are parametric FEA modeling, surrogate modeling methods, and visualization methods. A parametric FEA model can be developed that includes mesh morphing algorithms that allow the mesh to change parametrically along with the model geometry. This allows the surrogate models assigned to each individual node to use the nodal solution of multiple finite element analyses as regression points to approximate the FEA solution. The surrogate models can then be mapped to their respective geometric locations in real-time. Solution contours display the results of the FEA calculations and are updated in real-time as the parameters of the design model change.



College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering



Date Submitted


Document Type





surrogate modeling, simulation, design space exploration, finite element analysis, visualization, scientific visualization