While the use of student thinking to help build mathematical understandings in a classroom has been emphasized in best teaching practices, teachers still struggle with this practice and research still lacks a full understanding of how such learning can and should occur. To help understand this complex practice, I analyzed every instance of student thinking and every teacher response to that thinking during a high school geometry teacher's whole class discussion and used these codes as evidence of alignment or misalignment with principles of effective use of student mathematical thinking. I explored the teacher's practice both in small and large grains by considering each of her responses to student thinking, and then considered the larger practice through multiple teacher responses unified under a single topic or theme in the class discussion. From these codes, I moved to an even larger grain to consider how the teacher's practice in general aligned with the principles. These combined coding schemes proved effective in providing a lens to both view and make sense of the complex practice of teachers responding to student thinking. I found that when responding to student thinking the teacher tended to not allow student thinking to be at the forefront of classroom discussion because of misinterpretation of the student thinking or only using the student thinking in a local sense to help advance the discussion as framed by the teacher's thinking. The results showed that allowing student thinking to be at the forefront of classroom discussion is one way to position students as legitimate mathematical thinkers, though this position can be weakened if the teacher makes a move to correct inaccurate or incorrect student thinking. Furthermore, when teachers respond to student thinking students are only able to be involved in sense making if the teacher turns the ideas back to the students in such a way that positions them to make sense of the mathematics. Finally, in order to allow students to collaborate a teacher must turn the mathematics to the students with time and space for them to meaningfully discuss the mathematics. I conclude that the teacher's practice that I analyzed is somewhat aligned with honoring student mathematical thinking and allowing student thinking to be at the forefront of class discussion. On the other hand, the teacher's practice was strongly misaligned with collaboration and sense making. In this teacher's class, then, students were rarely engaged in sense making or collaborating in their mathematical work.



College and Department

Physical and Mathematical Sciences; Mathematics Education



Date Submitted


Document Type





mathematics instruction, teaching methods, whole-class discussion (teaching technique), teacher response, classroom mathematics discourse, teachable moments