Alcoholism is a devastating chronic relapsing disorder with significant costs to individuals and society. The mesolimbic dopamine (DA) system plays an important role in regulating reward and addiction. GABA neurons located in the ventral tegmental area (VTA) regulate VTA DA neuron activity, and are a relevant target for alcohol in the brain. VTA GABA neurons exhibit marked hyperexcitability during withdrawal from ethanol. Past research has demonstrated that the motivational effects of opiates cause a change in VTA GABA(A) receptors in opiate-dependent animals, which switch from a GABA-induced hyperpolarization of GABA neurons to a GABA-induced depolarization. The focus of this study was to characterize excitatory and inhibitory synaptic activity in VTA GABA neurons during withdrawal from acute and chronic alcohol, and to evaluate the function of the GABA(A) receptor in the pathway to dependence. Animals were either given injections of ethanol or saline, or were kept in ethanol vapor or air chambers for three weeks. We used standard whole-cell, perforated patch, and cell-attached mode electrophysiological techniques and pharmacology to obtain recordings of cellular activity. Results for excitatory and inhibitory synaptic events were somewhat mixed and inconclusive. There is evidence for a shift in function of the GABA(A) receptor after exposure to ethanol. We found that after a single injection of ethanol (4.0 g/kg) or a chronic intermittent ethanol vapor exposure, VTA GABA neuron firing rate is less sensitive to muscimol's inhibitory effects. The neural substrates of addiction studied here are important steps in the road to alcohol dependence, and a better understanding of them may lead to novel therapies.



College and Department

Life Sciences; Physiology and Developmental Biology



Date Submitted


Document Type





alcohol dependence, glutamate, GABA, plasticity, ethanol



Included in

Physiology Commons