Light field imaging, specifically synthetic aperture (SA) refocusing is a method used to combine images from an array of cameras to generate a single image with a narrow depth of field that can be positioned arbitrarily throughout the volume under investigation. Creating a stack of narrow depth of field images at varying locations generates a focal stack that can be used to find the location of objects in three dimensions. SA refocusing is particularly useful when reconstructing particle fields that are then used to determine the movement of the fluid they are entrained in, and it can also be used for shape reconstruction. This study applies SA refocusing to reacting flows and microscopic flows by performing shape reconstruction and 3D PIV on a flame, and 3D PIV on flow through a micro channel. The reacting flows in particular posed problems with the method. Reconstruction of the flame envelope was successful except for significant elongation in the optical axis caused by cameras viewing the flame from primarily one direction. 3D PIV on reacting flows suffered heavily from the index of refraction generated by the flame. The refocusing algorithm used assumed the particles were viewed through a constant refractive index (RI) and does not compensate for variations in the RI. This variation caused apparent motion in the particles that obscured their true locations making the 3D PIV prone to error. Microscopic PIV (µPIV) was performed on a channel containing a backward facing step. A microlens array was placed in the imaging section of the setup to capture a light field from the scene, which was then refocusing using SA refocusing. PIV on these volumes was compared to a CFD simulation on the same channel. Comparisons showed that error was most significant near the boundaries and the step of the channel. The axial velocity in particular had significant error near the step were the axial velocity was highest. Flow-wise velocity, though, appeared accurate with average flow-wise error approximately 20% throughout the channel volume.



College and Department

Mechanical Engineering; Ira A. Fulton College of Engineering and Technology



Date Submitted


Document Type





synthetic aperture PIV, light field imaging, particle image velocimetry, microscopic light field particle image velocimetry