This thesis contains the results of the development of crash prediction models for curved segments of rural two-lane two-way highways in the state of Utah. The modeling effort included the calibration of the predictive model found in the Highway Safety Manual (HSM) as well as the development of Utah-specific models developed using negative binomial regression. The data for these models came from randomly sampled curved segments in Utah, with crash data coming from years 2008-2012. The total number of randomly sampled curved segments was 1,495. The HSM predictive model for rural two-lane two-way highways consists of a safety performance function (SPF), crash modification factors (CMFs), and a jurisdiction-specific calibration factor. For this research, two sample periods were used: a three-year period from 2010 to 2012 and a five-year period from 2008 to 2012. The calibration factor for the HSM predictive model was determined to be 1.50 for the three-year period and 1.60 for the five-year period. These factors are to be used in conjunction with the HSM SPF and all applicable CMFs. A negative binomial model was used to develop Utah-specific crash prediction models based on both the three-year and five-year sample periods. A backward stepwise regression technique was used to isolate the variables that would significantly affect highway safety. The independent variables used for negative binomial regression included the same set of variables used in the HSM predictive model along with other variables such as speed limit and truck traffic that were considered to have a significant effect on potential crash occurrence. The significant variables at the 95 percent confidence level were found to be average annual daily traffic, segment length, total truck percentage, and curve radius. The main benefit of the Utah-specific crash prediction models is that they provide a reasonable level of accuracy for crash prediction yet only require four variables, thus requiring much less effort in data collection compared to using the HSM predictive model.



College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering



Date Submitted


Document Type





Highway Safety Manual, safety performance functions, crash modification factors, negative binomial, empirical Bayes, safety, horizontal curvature