The Wah Wah Springs Tuff and the Wah Wah Springs Intrusive Granodiorite Porphyry(Wah Wah Springs Intrusion) both originated from the Indian Peak caldera complex, which wasa major focus of explosive silicic activity in the middle Cenozoic Great Basin ignimbrite flareup. This caldera formed 30.0 Ma when an estimated 5,900 km3 of crystal-rich dacitic magma erupted to create the Wah Wah Springs Tuff. The Wah Wah Springs Intrusion later intruded the tuff, causing resurgence of the caldera. Field, modal, and geochemical evidence suggest the tuff and intrusion are cogenetic. The mineral assemblages of the two rocks are similar: both include similar proportions of plagioclase, quartz, hornblende, biotite, clinopyroxene, and Fe-Ti oxides, with trace amounts of titanite, apatite, and zircon. Whole rock geochemistry also matches, and both rocks have distinctively high Cr concentrations. Plagioclase, hornblende, and clinopyroxene have similar compositions but biotite and Fe-Ti oxides have been hydrothermally altered in the intrusion. Both hornblende and quartz provide clues to the magmatic evolution of the Wah Wah Springs Intrusion. Hornblende grains are either euhedral, have reaction rims, or are completely replaced by anhydrous minerals. Deterioration of hornblende was caused by decompression as the magma ascended and then stalled and solidified at shallow depths. Two stages of quartz growth are shown in cathodoluminescence (CL) imagery. Quartz first grew then was resorbed during eruption, then grew again at lower pressures indicated by CL-bright quartz rims and groundmass grains. The geochemical and mineralogical similarities, together with the distinctive hornblende and quartz characteristics suggest that after the Wah Wah Springs Tuff erupted, the unerupted mush rose to a shallow level where it crystallized at low pressure to form the Wah Wah Springs Intrusion. This indicates that the both rocks formed in the same chamber, and that tuffs and associated intrusions can be intimately related.



College and Department

Physical and Mathematical Sciences; Geological Sciences



Date Submitted


Document Type





intracaldera pluton, magma chamber, ignimbrite, Wah Wah Springs Tuff



Included in

Geology Commons