Nitrogen is an essential plant nutrient in the biosphere. Although N is necessary and beneficial for life, it is also a common pollutant in the atmosphere and hydrosphere as it may be lost to the atmosphere as ammonia (NH3) or nitrous oxide (N2O) gases or to groundwater as nitrate (NO3-) following fertilization. Polymer coated urea (PCU) is one type of N fertilizer which uses temperature-controlled diffusion to control N release to better match plant demand and mitigate environmental losses of N. The objectives of this project were to simultaneously compare the effects of PCU on gaseous (as N2O and NH3) and aqueous (as NO3-) N losses to the environment as compared to uncoated urea in grass systems over the entire PCU N-release period and to investigate the viability of photoacoustic infrared spectroscopy as a method to ascertain N2O and NH3 losses following fertilization. Two field studies were conducted on established turfgrass sites with a mixture of Kentucky bluegrass (KBG; Poa pratensis L.) and perennial ryegrass (PRG; Lolium perenne L.) in sand (Site 1) and loam (Site 2) soils. Each study compared an untreated control to 200 kg N ha-1 applied as either uncoated urea or PCU (Duration 45 CR®). In these studies PCU reduced NH3 emissions by 41-49% and N2O emissions by 16-54%, while improving growth and verdure. Leachate NO3- observations were inconclusive at each site. Glasshouse studies were conducted to compare N2O and NH3 emissions from PCU and uncoated urea to an untreated control utilizing a non-static, non-flow-through chamber in conjunction with photoacoustic infrared spectroscopy (PAIRS) for gas collection and analysis. Three short-term studies (17-21 d) were done with sand, sandy loam, and loam soils and a full-term (45 d) study with the loam soil. Each study was done in maize (Zea mays L.). Volatilization of ammonia was reduced by 72% and 22% in the sandy loam and loam soils, respectively, in 2008-2009 and by 14% in the loam in 2010. Evolution of N2O was reduced by 42% and 63% in the sandy loam and loam soils in 2008-2009 and by 99% in the loam in 2010. Overall, PCU decreased gaseous losses of N following fertilization while providing a steady supply of N to the plant. The utilization of PAIRS is a viable analysis method which gives higher temporal resolution analysis than is typically reported. These considerable decreases in environmental losses of N are major steps toward conserving natural resources and mitigating the negative environmental impacts associated with N fertilization in grass systems.



College and Department

Life Sciences; Plant and Wildlife Sciences



Date Submitted


Document Type





polymer coated urea, PCU, urea, nitrous oxide, N2O, ammonia, NH3, nitrate, NO3-, turfgrass, Kentucky blue grass, KBG, maize, volatilization, greenhouse gas