Abstract
A considerable amount of evidence has shown that for every prime p &neq; N observed, a simultaneous eigenvector v_0 of Hecke operators T(l,i), i=1,2, in H^3(Γ_0(N),F(0,0,0)) has a “lift” v in H^3(Γ_0(N),F(p−1,0,0)) — i.e., a simultaneous eigenvector v of Hecke operators having the same system of eigenvalues that v_0 has. For each prime p>3 and N=11 and 17, we construct a vector v that is in the cohomology group H^3(Γ_0(N),F(p−1,0,0)). This is the first construction of an element of infinitely many different cohomology groups, other than modulo p reductions of characteristic zero objects. We proceed to show that v is an eigenvector of the Hecke operators T(2,1) and T(2,2) for p>3. Furthermore, we demonstrate that in many cases, v is a simultaneous eigenvector of all the Hecke operators.
Degree
PhD
College and Department
Physical and Mathematical Sciences; Mathematics
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Hansen, Brian Francis, "A Lift of Cohomology Eigenclasses of Hecke Operators" (2010). Theses and Dissertations. 2169.
https://scholarsarchive.byu.edu/etd/2169
Date Submitted
2010-05-24
Document Type
Dissertation
Handle
http://hdl.lib.byu.edu/1877/etd3597
Keywords
Serre's Conjecture, Hecke operator, cohomology group, lift, eigenvector
Language
English