Abstract

Methods of slab-geometry molecular dynamics computer simulation were tested, compared, and applied to the prediction of activity coefficients, interfacial electrochemistry characterization, and ion transport through a model biological channel-membrane structure. The charged-sheets, 2-D Ewald, corrected 3-D Ewald, and corrected particle-particle-particle-mesh (P3M) methods were compared for efficiency and applicability to slab-geometry electrolyte systems with discrete water molecules. The P3M method was preferred for long-range force calculation in the problems of interest and was used throughout.

The osmotic molecular dynamics method (OMD) was applied to the prediction of liquid mixture activity coefficients for six binary systems: methanol/n-hexane, n-hexane/n-pentane, methanol/water, chloroform/acetone, n-hexane/chloroform, methanol/ chloroform. OMD requires the establishment of chemical potential equilibrium across a semi-permeable membrane that divides the simulation cell between a pure solvent chamber and a chamber containing a mixture of solvent and solute molecules in order to predict the permeable component activity coefficient at the mixture side composition according to a thermodynamic identity. Chemical potential equilibrium is expedited by periodic adjustment of the mixture side chamber volume in response to the observed solvent flux. The method was validated and shown to be able to predict activity coefficients within the limitations of the simple models used.

The electrochemical double layer characteristics for a simple electrolyte with discrete water molecules near a charged electrode were examined as a function of ion concentration, electrode charge, and ion size. The fluid structure and charge buildup near the electrode, the voltage drop across the double layer, and the double layer capacitance were studied and were found to be in reasonable agreement with experimental findings.

Applied voltage non-equilibrium molecular dynamics was used to calculate the current-voltage relationship for a model biological pore. Ten 10-nanosecond trajectories were computed in each of 10 different conditions of concentration and applied voltage. The channel-membrane structure was bathed in electrolyte including discrete water molecules so that solvation, entry, and exit effects could be studied. Fluid structure, ion dynamics, channel selectivity, and potential gradients were examined. This work represents the first such channel study that does not neglect the vital contributions of discrete water molecules.

Degree

PhD

College and Department

Ira A. Fulton College of Engineering and Technology; Chemical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2002

Document Type

Dissertation

Handle

http://hdl.lib.byu.edu/1877/etd15

Keywords

slab geometry, molecular dynamics, interfacial chemistry, intermolecular coulombic interactions, long-range force calculation, Corrected 3-D Ewald method, charged-sheet method, activity coefficients, electrochemical interface, ion transport, osmotic molecular dynamics, ion density

Language

English

Share

COinS