Turbine engine efficiency modeling depends on many parameters related to fluid dynamics and heat transfer. Many of these parameters change dynamically once the engine enters service and begins to experience surface degradation. This thesis presents a validation of the design and operation of an accelerated testing facility for the study of foreign deposit layers typical to the operation of land-based gas turbines. It also reports on the use of this facility in an effort to characterize the change in thermal resistance on the surface of turbine blades as deposits accumulate. The facility was designed to produce turbine deposits in a 4-hour test that would simulate 10,000 hours of turbine operation. This is accomplished by matching the net foreign particulate throughput of an actual gas turbine. Flow Mach number, temperature and particulate impingement angle are also matched. Validation tests were conducted to model the ingestion of foreign particulate typically found in the urban environment. The majority of this particulate is ceramic in nature and smaller than 10µm in size, but varies in size up to 80µm. Deposits were formed for flow Mach number and temperature of 0.3 and 1150°C respectively, using air plasma sprayed (APS) thermal barrier coat (TBC) material coupons donated from industry. These conditions are typical of a modern, first stage nozzle. Investigations over a range of impingement angles yielded samples with deposit thicknesses from 50 to 200µm in 4-hour, accelerated-service simulations. Above a threshold temperature, deposit thickness was dependent primarily upon particle concentration. Test validation was achieved using direct comparison with deposits from service hardware. Deposit characteristics affecting blade heat transfer via convection and conduction were assessed. Surface topography analysis indicated that the surface structure of the generated deposits were similar to those found on actual turbine blades. Scanning electron microscope (SEM) and x-ray spectroscopy analyses indicated that the deposit microstructures and chemical compositions were comparable to turbine blade deposit samples obtained from industry. A roadmap for the development of a theoretical model of thermal resistance using the SEM scan is presented. Thermal resistance experiments conducted with deposit samples indicate that a general decrease in thermal resistance occurs as the samples are exposed to operating conditions in the accelerated testing facility. This is likely due to sintering effects within the TBC dominating any thermal resistance increase arising from deposition. Recommendations for future research into the interaction between TBC sintering and deposit evolution are presented.



College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering



Date Submitted


Document Type





gas turbine engine, degradation, power generation, heat transfer, accelerated deposit facility, thermal resistance, mechanical engineering, turbomachinery, Brigham Young University, BYU, Department of Energy, DOE