Keywords
machine learning algorithms, cross-validation, confidence, fitness
Abstract
Neural network and machine learning algorithms often have parameters that must be tuned for good performance on a particular task. Leave-one-out cross-validation (LCV) accuracy is often used to measure the fitness of a set of parameter values. However, small changes in parameters often have no effect on LCV accuracy. Many learning algorithms can measure the confidence of a classification decision, but often confidence alone is an inappropriate measure of fitness. This paper proposes a combined measure of Cross- Validation and Confidence (CVC) for obtaining a continuous measure of fitness for sets of parameters in learning algorithms. This paper also proposes the Refined Instance-Based (RIB) learning algorithm which illustrates the use of CVC in automated parameter tuning. Using CVC provides significant improvement in generalization accuracy on a collection of 31 classification tasks when compared to using LCV.
Original Publication Citation
Wilson, D. R. and Martinez, T. R, "Combining Cross-Validation and Confidence to Measure Fitness", Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN'99, CD paper #163, 1999.
BYU ScholarsArchive Citation
Martinez, Tony R. and Wilson, D. Randall, "Combining Cross-Validation and Confidence to Measure Fitness" (1999). Faculty Publications. 1120.
https://scholarsarchive.byu.edu/facpub/1120
Document Type
Peer-Reviewed Article
Publication Date
1999-07-16
Permanent URL
http://hdl.lib.byu.edu/1877/2416
Publisher
IEEE
Language
English
College
Physical and Mathematical Sciences
Department
Computer Science
Copyright Status
© 1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Copyright Use Information
http://lib.byu.edu/about/copyright/