Abstract
Research in Unmanned Air Vehicles (UAV's) continues to push the limitations of size and weight. As technical advances have made UAV's smaller and less expensive, they have become more flexible and extensive in their roles. To continue using smaller and less expensive components while retaining and even enhancing performance requires more sophisticated processing of sensor data in order for the UAV to accurately determine its state and thereby allow the use of feedback in controlling the aircraft automatically. This work presents a three-stage state-estimation scheme for the class of UAV's know as Miniature Air Vehicles (MAV's). The first stage estimates pitch and roll, the second stage estimates heading, and the third stage produces a position estimate and an estimate of wind speed and direction. All three stages make use of the extended Kalman filter, a framework for using a system dynamic model to predict future states and to update the predictions using weighted sensor measurements as they become available, where the weighting is based on the relative uncertainty of the dynamic model and the sensors. Using the three-stage state esti-mation scheme, significant improvements in the estimation of pitch, roll and heading have been achieved in simulation and flight testing. Performance of the navigation (position and wind) stage is comparable to an existing baseline algorithms for position and wind, and shows additional promise for use in dead reckoning when GPS updates become unavailable.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Mechanical Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Eldredge, Andrew Mark, "Improved State Estimation for Miniature Air Vehicles" (2006). Theses and Dissertations. 947.
https://scholarsarchive.byu.edu/etd/947
Date Submitted
2006-08-02
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd1527
Keywords
UAV MAV unmanned autonomous vehicle state estimation gyro gyroscope accelerometer pressure airspeed magnetometer compass GPS navigation wind kalman filter
Language
English