Abstract
Automated scoring of essays has been a research topic for some time in computational linguistics studies. Only recently have the particular challenges of automatic holistic scoring of ESL essays with their high grammatical, spelling and other error rates been a topic of research. This thesis evaluates the effectiveness of using statistical measures of linguistic maturity to predict holistic scores for ESL essays using several techniques. Selected linguistic attributes include parts of speech, part-of-speech patterns, vocabulary density, and sentence and essay lengths. Using customized algorithms based on multivariable regression analysis as well as memory-based machine learning, holistic scores were predicted on test essays within ±1.0 of the scoring level of human judges' scores successfully an average of 90% of the time. This level of prediction is an improvement over a 66% prediction level attained in a previous study using customized algorithms.
Degree
MA
College and Department
Humanities; Linguistics and English Language
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Millett, Ronald, "Holistic Scoring of ESL Essays Using Linguistic Maturity Attributes" (2006). Theses and Dissertations. 762.
https://scholarsarchive.byu.edu/etd/762
Date Submitted
2006-07-21
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd1507
Keywords
ESL, Holistic Score, Essay Analysis, Machine Learning, Linear Regression Analysis, WordMap, TiMBL
Language
English