Abstract

This thesis investigates the suitability of thermo-kinetically recycled plastics for use in commercial product applications using finite element analysis and statistics. Different recycled material blends were tested and evaluated for their use in commercial product applications. There are six different blends of thermo-kinetically recycled plastics used for testing and CATIA is used for finite element analysis. The different types of thermo-kinetically recycled plastics blends are: pop bottles made of PolyethyleneTeraphthalate (PET), milk jugs made of High-Density Polyethylene (HDPE), Vinyl seats made of Poly Vinyl Chloride (PVC) and small amount of Polypropylene (PP) and Urethane, electronic scrap made of engineering resins like Acrylo-Nitrile-Butadiene Styrene (ABS), Polystyrene (PS) and Polycarbonate (PC), agriculture waste consisting of Low Density Polyethylene (LDPE), industrial waste consisting of Nylon (PA66) and PolyethyleneTeraphthalate (PET), household waste consisting of Polystyrene (PS). The methods employed during the study include three phases for each of six blends available: 1.Density, tensile and impact testing of each blend 2.Correlation of mechanical properties to blend 3.Finite element analysis of the service performance of a product made from each thermo-kinetically recycled plastic blend This thesis shows that some of the recycled plastics materials that were tested are qualified to be used in the pallet. Those materials that qualified were Industrial waste consisting of Nylon and PolyethyleneTeraphthalate, household waste consisting of Polystyrene.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Technology

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2005-11-15

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd1086

Keywords

Thermokinetically recycled plastics blends, Finite element analysis, Statistics

Share

COinS