The lungs represent one of the earliest interfaces for pathogens and noxious stimuli to interact with the body. As such, careful maintenance of the permeability barrier is vital in providing homeostasis within the lung. Essential to maintaining this barrier is the tight junction, which primarily acts as a paracellular seal and regulator of ionic transport, but also contributes to establishing cell polarity, cell-to-cell integrity, and regulating cell proliferation and differentiation. The loss of these tight junctions has been documented to result in alterations in inflammation, and ultimately the development of many respiratory disorders such as COPD, Asthma, ARDS, and pulmonary fibrosis. One critical contributor that creates this permeability barrier is the tight junctional protein Claudin. While studies have begun to elucidate the various functions and roles of various Claudins, our understanding is still limited. To initially investigate these proteins, we looked at both temporal and spatial expression patterns for family members during development. A consistent pattern was demonstrated in mRNA expression for the majority of Claudin members. In general, Claudin expression underwent rapid increase during time periods that correlate with the pseudoglanduar/canalicular periods. One notable exception was Claudin 6 (Cldn6), which demonstrated decreasing levels of mRNA expression throughout gestation. We also sought to understand expression dynamics during the addition of maternal secondhand smoke (SHS) which resulted in an almost universal decrease in Claudin proteins. To more fully explore expression mechanisms that affect Claudin-6 (Cldn6), we exposed pulmonary alveolar type II (A549) cells to cigarette smoke extract (CSE) and found that it transcriptionally regulated Cldn6 expression. Using a luciferase reporter, we determined that transcription was negatively regulated at multiple promoter response elements by CSE, and transcription was equally hindered by hypoxic conditions. These findings identified Cldn6 as a potential target of SHS and other respiratory irritants such as diesel particulate matter (DPM). We next sought to assess whether an increase in Cldn6 was sufficient to provide a protective advantage against harmful exogenous exposure. To test this, we utilized a doxycycline induced Cldn6 over-expressing mouse, and subjected it to SHS for 30 days to stimulate an inflammatory state. Our findings demonstrated that Cldn6 transgenic animals have decreased inflammation as evidence by decreased total cell infiltration into the airways, decreased polymorphonuclocyte (PMNs) extravasation, total protein in bronchoalveolar lavage fluid (BALF), and decreased cytokine secretion. Anti-inflammatory advantages were also discovered during experiments involving acute exposure to DPM. In both cases, while stimulation of transgenic mice with SHS or DPM diminished Cldn6 expression, anti-inflammatory evidence emerged suggesting that genetic up-regulation of Cldn6 likely causes the recruitment of other tight junctional components during an organism's response to environmental assault.



College and Department

Life Sciences; Physiology and Developmental Biology



Date Submitted


Document Type





claudin 6, secondhand smoke, diesel particulate matter, hypoxia, lungs

Included in

Physiology Commons