Abstract

The sum-product network (SPN) is a recently-proposed generative, probabilistic model that is guaranteed to compute any joint or any marginal probability in time linear in the size of the model. An SPN is represented as a directed, acyclic graph (DAG) of sum and product nodes, with univariate probability distributions at the leaves. It is important to learn the structure of this DAG since the set of distributions representable by an SPN is constrained by it. We present the first batch structure learning algorithm for SPNs and show its advantage over learning the parameters of an SPN with fixed architecture. We propose a search algorithm for learning the structure of an SPN and show that its ability to learn a DAG-structured SPN makes it better for some tasks than algorithms that only learn tree-structured SPNs. We adapt the structure search algorithm to learn the structure of an SPN in the online setting and show that two other methods for online SPN structure learning are slower or learn models with lower likelihood. We also propose to combine SPNs with an autoencoder to model image data; this application of SPN structure learning shows that both models benefit from being combined.We are also the first to propose a distinction between nonmonotone and monotone SPNs, or SPNs with negative edge-weights and those without, respectively. We prove several important properties of nonmonotone SPNs, propose algorithms for learning a special class of nonmonotone SPN called the twin SPNs, and show that allowing negative edge-weights can help twin SPNs model some distributions more compactly than monotone SPNs.

Degree

PhD

College and Department

Physical and Mathematical Sciences; Computer Science

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2016-12-01

Document Type

Dissertation

Handle

http://hdl.lib.byu.edu/1877/etd8945

Keywords

Sum-product networks, structure learning, structure search, online structure search, nonmonotone sum-product networks

Share

COinS