Abstract

Concrete bridge decks in Utah are experiencing observable deterioration due primarily to freeze-thaw cycles and the routine application of deicing salts during winter maintenance activities. Given the need for increasingly cost-effective strategies for bridge deck maintenance, rehabilitation, and replacement (MR&R), the Utah Department of Transportation (UDOT) initiated this research to ultimately develop a protocol offering guidance as to whether deteriorated bridge decks should be rehabilitated or replaced. While threshold values for various non-destructive condition assessment methods were proposed in earlier UDOT research, this work focused on implementing the recommended test criteria. Twelve bridges were identified by UDOT engineers for inclusion in the study, and data were collected from each deck to determine whether the bridge decks warranted rehabilitation or replacement based on the proposed threshold values. Several evaluation techniques were employed to assess concrete bridge deck condition, including visual inspection, hammer sounding and chaining, dielectric measurements, ground-penetrating radar imaging, resistivity testing, half-cell potential testing, and chloride concentration testing. The condition assessment testing confirmed that chloride-induced corrosion of reinforcing steel is the primary mechanism of deck deterioration and that inadequate cover over the upper steel mat facilitated accelerated corrosion damage in many instances. The bridge deck condition analyses produced from the results of non-destructive testing were compared to the visual inspection ratings assigned to each deck by UDOT. Concrete bridge deck condition data should be collected regularly through inspection and monitoring programs to facilitate prioritization of MR&R strategies for individual bridges and to evaluate the impact of such strategies on the overall condition of the network. Performance indices based on selected condition assessment parameters should be developed for use in bridge management activities, and mathematical deterioration models should be calibrated in order to forecast both network-level and project-level conditions and predict funding requirements for various possible MR&R strategies. Further research, including statistical analyses of the data presented in this report, should be completed to develop relevant mathematical deterioration models for predicting the service lives of concrete bridge decks in Utah.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2005-06-15

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd853

Keywords

concrete bridge decks, visual inspection, sounding, resistivity, half-cell potential, ground-penetrating radar, chloride concentration, delaminations

Share

COinS